Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Main subject
Language
Year range
1.
Dongelmans, Dave A.; Termorshuizen, Fabian, Brinkman, Sylvia, Bakhshi-Raiez, Ferishta, Sesmu, Arbous M.; de Lange Dylan, W.; van Bussel Bas, C. T.; de Keizer Nicolette, F.; Verbiest, Dirk P.; te Velde Leo, F.; van Driel Erik, M.; Rijpstra, Tom, Elbers, Paul W. G.; Georgieva, Lyuba, Verweij, Eva, de Jong Remko, M.; van Iersel Freya, M.; Koning Dick, T. J. J.; Rengers, Els, Kusadasi, Nuray, Erkamp, Michiel L.; van den Berg, Roy, Jacobs Cretièn, J. M. G.; Epker, Jelle L.; Rijkeboer, Annemiek A.; de Bruin Martha, T.; Spronk, Peter, Draisma, Annelies, Versluis, Dirk Jan, van den Berg Lettie, A. E.; Mos Marissa, Vrolijk-de, Lens, Judith A.; Jannet, Mehagnoul-Schipper D.; Gommers, Diederik, Lutisan, Johan G.; Hoeksema, Martijn, Pruijsten, Ralph V.; Kieft, Hans, Rozendaal, Jan, Nooteboom, Fleur, Boer, Dirk P.; Janssen Inge, T. A.; van Gulik, Laura, Peter, Koetsier M.; Silderhuis, Vera M.; Schnabel, Ronny M.; Drogt, Ioana, de Ruijter, Wouter, Bosman, Rob J.; Frenzel, Tim, Urlings-Strop Louise, C.; Allard, Dijkhuizen, Hené, Ilanit Z.; de Meijer Arthur, R.; Holtkamp Jessica, W. M.; Postma, Nynke, Bindels Alexander, J. G. H.; Wesselink Ronald, M. J.; van Slobbe-Bijlsma Eline, R.; van der Voort Peter, H. J.; Eikemans Bob, J. W.; Barnas Michel, G. W.; Festen-Spanjer, Barbara, van Lieshout, Maarten, Gritters, Niels C.; van Tellingen, Martijn, Brunnekreef, Gert B.; Vandeputte, Joyce, Dormans Tom, P. J.; Hoogendoorn, Marga E.; de Graaff, Mart, Moolenaar, David, Reidinga, Auke C.; Spijkstra Jan, Jaap, de Waal, Ruud.
Annals of Intensive Care ; 12(1), 2022.
Article in English | ProQuest Central | ID: covidwho-1837260

ABSTRACT

BackgroundTo assess trends in the quality of care for COVID-19 patients at the ICU over the course of time in the Netherlands.MethodsData from the National Intensive Care Evaluation (NICE)-registry of all COVID-19 patients admitted to an ICU in the Netherlands were used. Patient characteristics and indicators of quality of care during the first two upsurges (N = 4215: October 5, 2020–January 31, 2021) and the final upsurge of the second wave, called the ‘third wave’ (N = 4602: February 1, 2021–June 30, 2021) were compared with those during the first wave (N = 2733, February–May 24, 2020).ResultsDuring the second and third wave, there were less patients treated with mechanical ventilation (58.1 and 58.2%) and vasoactive drugs (48.0 and 44.7%) compared to the first wave (79.1% and 67.2%, respectively). The occupancy rates as fraction of occupancy in 2019 (1.68 and 1.55 vs. 1.83), the numbers of ICU relocations (23.8 and 27.6 vs. 32.3%) and the mean length of stay at the ICU (HRs of ICU discharge = 1.26 and 1.42) were lower during the second and third wave. No difference in adjusted hospital mortality between the second wave and the first wave was found, whereas the mortality during the third wave was considerably lower (OR = 0.80, 95% CI [0.71–0.90]).ConclusionsThese data show favorable shifts in the treatment of COVID-19 patients at the ICU over time. The adjusted mortality decreased in the third wave. The high ICU occupancy rate early in the pandemic does probably not explain the high mortality associated with COVID-19.

2.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1328331.v1

ABSTRACT

Background: Identification of distinct clinical phenotypes in critically ill COVID-19 patients could improve understanding of the disease heterogeneity and enable prognostic and predictive enrichment facilitating more personalized treatment. However, previous attempts did not take into account temporal dynamics of the disease. By including the dimension of time, we aim to gain further insights into the heterogeneity of COVID-19.Methods: We used highly granular data from 3202 adult critically ill COVID patients in the multicenter Dutch Data Warehouse that were admitted to one of 25 Dutch ICUs between February 2020 and March 2021. Parameters including demographics, clinical observations, medications, laboratory values, vital signs, and data from life support devices were selected based on relevance and availability. Twenty-one consecutive datasets were created that each covered 24 hours of ICU data for each day of ICU treatment up until day 21. After aggregation and multiple imputation of the temporal data, clinical phenotypes in each dataset were identified by performing multiple cluster analyses. Clinical phenotypes were identified by aggregating values from all patients per cluster. Both evolution of the clinical phenotypes over time and patient allocation to these clusters over time were tracked.Results: The final patient cohort consisted of 2438 critically ill COVID-19 patients with a registered ICU mortality outcome. Forty-one parameters were chosen for the cluster analysis. On admission, both a mild and a more severe clinical phenotype were found. After day 4, the severe phenotype split into an intermediate and a severe phenotype for 11 consecutive days. Heterogeneity between phenotypes appears to be strongly driven by inflammation and dead space ventilation. During the 21-day period only 8.2% and 4.6% of patients in the initial mild and severe clusters remained assigned to the same phenotype respectively. The clinical phenotype half-life was between 5 and 6 days for the mild and severe phenotypes, and about 3 days for the medium severe phenotype.Conclusions: Patients typically do not remain in the same cluster throughout intensive care treatment. This may have important implications for prognostic or predictive enrichment. Prominent dissimilarities between clinical phenotypes are predominantly driven by inflammation and dead space ventilation.


Subject(s)
COVID-19
3.
arxiv; 2021.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2109.06707v2

ABSTRACT

Despite the recent progress in the field of causal inference, to date there is no agreed upon methodology to glean treatment effect estimation from observational data. The consequence on clinical practice is that, when lacking results from a randomized trial, medical personnel is left without guidance on what seems to be effective in a real-world scenario. This article proposes a pragmatic methodology to obtain preliminary but robust estimation of treatment effect from observational studies, to provide front-line clinicians with a degree of confidence in their treatment strategy. Our study design is applied to an open problem, the estimation of treatment effect of the proning maneuver on COVID-19 Intensive Care patients.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL